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Figure 1: (a) Carry-Light and (b) Carry-Heavy activities have similar visual features. (a & b) However, these activities have distinct gyroscope
and acceleration data. (a & b: bottom-row) Our proposed method, MuMu, utilizes a guided multimodal fusion approach to appropriately
prioritize salient modalities (Gyroscope and Acceleration, in this case) while extracting multimodal representations. (c) MuMu can adaptively
adjust attention weights when data is noisy. For example, MuMu pays more attention to the non-noisy data (Orientation) than the noisy data
(Gyroscope and Acceleration) or misaligned data (View-1 & 2). (Data samples are drawn from MMAct dataset (Kong et al. 2019)).

Abstract

Multimodal sensors (visual, non-visual, and wearable) can
provide complementary information to develop robust per-
ception systems for recognizing activities accurately. How-
ever, it is challenging to extract robust multimodal repre-
sentations due to the heterogeneous characteristics of data
from multimodal sensors and disparate human activities, es-
pecially in the presence of noisy and misaligned sensor data.
In this work, we propose a cooperative multitask learning-
based guided multimodal fusion approach, MuMu, to ex-
tract robust multimodal representations for human activity
recognition (HAR). MuMu employs an auxiliary task learn-
ing approach to extract features specific to each set of ac-
tivities with shared characteristics (activity-group). MuMu
then utilizes activity-group-specific features to direct our pro-
posed Guided Multimodal Fusion Approach (GM-Fusion) for
extracting complementary multimodal representations, de-
signed as the target task. We evaluated MuMu by compar-
ing its performance to state-of-the-art multimodal HAR ap-
proaches on three activity datasets. Our extensive experimen-
tal results suggest that MuMu outperforms all the evaluated
approaches across all three datasets. Additionally, the abla-
tion study suggests that MuMu significantly outperforms the
baseline models (p < 0.05), which do not use our guided
multimodal fusion. Finally, the robust performance of MuMu
on noisy and misaligned sensor data posits that our approach
is suitable for HAR in real-world settings.

Copyright © 2022, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

1 Introduction

Understanding human activity ensures effective human-
autonomous-system collaboration in various settings, from
autonomous vehicles to assistive living to manufacturing
(Sabokrou et al. 2019; Igbal and Riek 2017; Yasar and
Igbal 2021; Igbal et al. 2019). For example, accurate activ-
ity recognition could aid collaborative robots in assisting a
worker by bringing tools or autonomous vehicles in request-
ing to take over the controls from a distracted driver to en-
sure safety (Kubota et al. 2019; Pakdamanian et al. 2020).
Human activity recognition (HAR) has been extensively
studied by utilizing unimodal sensor data, such as visual
(Ryoo et al. 2017; Zhang and Parker 2011; Fan et al. 2018),
skeleton (Arzani et al. 2017; Ke et al. 2017; Yan, Xiong, and
Lin 2018; Igbal, Rack, and Riek 2016), and wearable sensors
(Frank, Kubota, and Riek 2019; Batzianoulis et al. 2017).
However, unimodal HAR methods struggle to recognize ac-
tivity in various real-world scenarios for multiple reasons.
First, distinct activities can be mistakenly classified as the
same when relying on visual sensors (Kong et al. 2019). For
example, the activities related to carrying a light and a heavy
object look similar from visual modalities; however, they
have distinct physical sensor data (i.e., Gyroscope & Accel-
eration) (Fig. 1-a & b). Second, HAR algorithms relying on
unimodal sensor data may fail to recognize activities when
the sensor data is noisy (Fig. 1-c). Thus, in these cases, us-
ing multiple modalities can compensate for the weaknesses
of any particular modality in recognizing an activity.
Several multimodal learning approaches have been pro-
posed to accurately recognize human activities by fusing
data from multiple sensors, such as visual, motion capture,



and wearable sensors (Feichtenhofer et al. 2019; Kong et al.
2019; Roitberg et al. 2015; Joze et al. 2020; Liu et al. 2019;
Perez-Rua et al. 2019; Hasan et al. 2019; Islam and Igbal
2020). Although these approaches work adequately in many
scenarios, some crucial challenges remain in achieving ro-
bust recognition performance, particularly when data from
multiple sensors are missing or misaligned.

First, disparate activity-groups require different modali-
ties to accurately recognize activities (an activity-group con-
sists of a set of activities, that exhibit similar characteris-
tics) (Kubota et al. 2019). For example, Kubota et al. (2019)
found that data from the motion capture system helps to rec-
ognize gross-motion activities involving arm and leg move-
ments (e.g., walking). Moreover, they found that data from
wearable sensors helps to recognize fine-grained motion ac-
tivities involving hand or finger movements (e.g., grasping).
Therefore, if a learning approach can exploit the characteris-
tics of activity-groups while extracting the multimodal rep-
resentations, then that approach can extract robust represen-
tation to improve HAR performance. Moreover, in many ex-
isting datasets, activities are grouped into major categories
based on shared characteristics (Chen, Jafari, and Kehtar-
navaz 2015; Kubota et al. 2019; Kong et al. 2019; Awad et al.
2018). For example, Kong et al. (2019) grouped daily human
activities into three groups: complex (e.g., carrying, talking),
simple (e.g., kicking, jumping), and desk (e.g., using PC).
Surprisingly, apart from grouping the activities, these labels
of auxiliary activity-groups have not been utilized in extract-
ing multimodal representations.

Second, most existing multimodal learning approaches
assume non-noisy and time-aligned multimodal sensor data
during training and testing phases. These assumptions limit
the applicability of the existing multimodal learning ap-
proaches in real-world settings, as the presence of mis-
aligned and noisy sensor data is not uncommon due to oc-
clusion and sensor noises (Fig. 1-c). Thus, we need to de-
velop and evaluate the multimodal learning approaches in
the presence of noisy and misaligned sensor data to ensure
their applicability in real-world settings.

To address the aforementioned challenges, we propose a
novel Cooperative Multitask Learning-based Guided Mul-
timodal Fusion Approach (MuMu) for HAR. In MuMu,
we have designed a multitask learning approach that in-
volves learning two cooperative tasks: an auxiliary and a
target task. First, MuMu extracts activity-group-specific fea-
tures for activity-group recognition (auxiliary task). Sec-
ond, the activity-group-specific features direct our Guided
Multimodal Fusion Approach (GM-Fusion) to extract robust
multimodal representations for recognizing activities (target
task). Here, both tasks work cooperatively, where the aux-
iliary task guides the target task to extract complementary
multimodal representations appropriately.

We compared the performance of MuMu to several state-
of-the-art HAR algorithms on three multimodal activity
datasets (MMAct (Kong et al. 2019), UTD-MHAD (Chen,
Jafari, and Kehtarnavaz 2015) and UCSD-MIT (Kubota
et al. 2019)). The results from our extensive experimental
evaluations suggest that MuMu outperforms all the state-
of-the-art approaches in all evaluation conditions. MuMu

achieved an improvement of 4.45% and 3.61% (F1-score) on
the MMAct dataset for the cross-subject and cross-session
evaluation conditions, compared to the state-of-the-art ap-
proaches, respectively. Additionally, MuMu achieved an im-
provement of 6.86% and 2.48% (top-1 accuracy) on the
UCSD-MIT and the UTD-MHAD datasets for leave-one-
subject-out evaluation settings, compared to the state-of-
the-art approaches, respectively. Furthermore, our qualita-
tive analysis of multimodal attention weights suggests that
our proposed guided multimodal fusion approach can ap-
propriately prioritize the modalities while extracting com-
plementary representations, even in the presence of noisy
and misaligned sensor data (Fig. 1 & 4). Moreover, our ex-
tensive ablation study suggests that our proposed approach
significantly outperforms the baseline multimodal learning
approaches (p < 0.05), which do not use guided fusion.

2 Related Work

Multimodal Learning: Several multimodal learning ap-
proaches have been developed for various tasks (Guo, Wang,
and Wang 2019; Roitberg et al. 2015), such as video classi-
fication (Feichtenhofer et al. 2019; Xiao et al. 2020), hu-
man activity recognition (Islam and Igbal 2021; Long et al.
2018; Joze et al. 2020), and visual question answering (Lu
et al. 2019; Li et al. 2019). Some of these approaches have
been designed to extract representations from data of similar
types of modalities (Feichtenhofer, Pinz, and Wildes 2016,
2017; Zhang et al. 2018). For example, Simonyan and Zis-
serman (2014) designed a two-stream CNN-based model to
extract spatial and temporal features from the visual modal-
ities. Similarly, Feichtenhofer et al. (2019) proposed a two-
stream learning model to extract spatial-temporal features
by varying the data sampling rate in those streams.

Other approaches have focused on extracting representa-
tions from heterogeneous modalities (Kubota et al. 2019;
Kong et al. 2019; Islam and Igbal 2020; Joze et al. 2020;
Perez-Rua et al. 2019; Miinzner et al. 2017; Liu et al. 2019).
For example, Long et al. (2018) designed a self-attention
approach to extract unimodal features from different modal-
ities, which were then concatenated to produce multimodal
representations. Several approaches have been proposed to
fuse the representations at the intermediary layers of the
model (Feichtenhofer et al. 2019; Xiao et al. 2020; Joze et al.
2020). For instance, Xiao et al. (2020) used a multi-stream
CNN-based model to fuse representations at the intermedi-
ate layers. However, these approaches depend on human ex-
perts to determine which layers’ representations should be
fused. These manual fusion approaches often introduce bias
in the model and produce suboptimal representations.

Multitask Learning: Several multitask learning ap-
proaches have been designed to learn various tasks by shar-
ing their learned knowledge to improve these tasks perfor-
mance (Ruder 2017; Hashimoto et al. 2016; Zhang and Yang
2017; Guo et al. 2018; Vandenhende et al. 2020; Gagné
2019; Zhou et al. 2020a). For example, Standley et al. (2020)
proposed a multitask learning framework where tasks are
grouped and learned by exploiting the cooperative and com-
petitive relationships among the tasks. Similarly, Guo, Lee,
and Ulbricht (2020) utilized a tree-structured design space



and Gumbel-softmax (Jang, Gu, and Poole 2016; Maddi-
son, Mnih, and Teh 2016) to determine which parts of the
network can be shared or branched to maximize the pa-
rameters sharing and the tasks performance. Generally, one
of the primary goals of the existing multitask learning ap-
proaches is to maximize the sharing of learning parameters
or knowledge among the heterogeneous tasks (Crawshaw
2020; Sggaard and Goldberg 2016; Ruder 2017).
Additionally, multitask models have been used to learn
shared representations (Ruder 2017; Xu et al. 2018; Zhou
et al. 2020b; Achille et al. 2019; Zamir et al. 2018). For ex-
ample, Liu, Johns, and Davison (2019) proposed a multitask
attention model to extract a shared feature for learning task-
specific representations. Moreover, Sun et al. (2020) de-
signed an algorithm to learn feature sharing patterns across
tasks for maximizing shared representations. The overall
goal of these approaches is to compress a multitask learning
model by maximizing the shared representations among the
competitive heterogeneous tasks. In this work, we have de-
signed a cooperative multitask learning approach, where the
auxiliary task guides the target task to extract multimodal
representations to recognize activities accurately.

3 MuMu: Multitask Learning-based
Guided Multimodal Fusion Approach
3.1 Problem Formulation

We define a cooperative multitask learning problem, which
involves learning the auxiliary and the target tasks coopera-
tively for multimodal fusion. Similar to the multi-class activ-
ity recognition problem, we aim to recognize a set of K ac-
tivities, A = (Ay, ..., Ax), by extracting multimodal rep-
resentations (X ¢) from M heterogeneous modalities, X" =
(XT,...,X};) (r stands for raw feature). We have termed
this activity recognition (A; € A) as the target task.
Activity datasets defined activity-group in various ways.
For example, UCSD-MIT uses human motion to define
activity-group (gross & fine), whereas the MMAct dataset
uses the complexity of the activities (complex, simple &
desk). As different activity-groups share disparate char-
acteristics, they require different modalities for recogniz-
ing activities (Kubota et al. 2019). Thus, we divide the
activity set A into N activity-groups (G), where G =
(G1,...,GnN). Here, each activity-group (G};), consists of
J; unique activities that share similar characteristics, where
Gi = (Af,..., A7), and A7 € A. We have termed the
activity-group recognition (G; € G) as the auxiliary task.

3.2 Approach Overview

Our proposed Cooperative Multitask Learning-based
Guided Multimodal Fusion Approach (MuMu) consists of
three learning modules (Fig. 2):

* Unimodal Feature Encoder (UFE) encodes modality-
specific spatial-temporal features.

e Auxiliary Task Learning (ATL) Module extracts
activity-group-specific multimodal representations.

* Target Task Learning (TTL) Module utilizes the
activity-group-specific features from the auxiliary task as
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Figure 2: MuMu: Cooperative Multitask Learning-based Guided
Multimodal Fusion Approach. The Unimodal Feature Encoder
encodes unimodal spatial-temporal features. The Auxiliary Task
module fuses the unimodal features to extract the activity-group-
specific features. The activity-group features guide the Target Task
module to fuse and extract complementary multimodal represen-
tations by employing a Guided Multimodal Fusion Approach. We
have designed a multitask learning loss for end-to-end training.

prior information to appropriately fuse and extract multi-
modal representations for activity recognition.

3.3 UFE: Unimodal Feature Encoder

We have adopted the Unimodal Feature Encoder (UFE) ar-
chitecture from the work by Islam and Igbal (2020). In our
implementation, UFE independently encodes salient uni-
modal features of each modality m € M in four steps.
First, UFE segments the raw unimodal features and produces
X7 = (@, 1,02l g ) € REXSmxDn “where B
is the batch size, .Sy, is the segment size, and Dy, is the raw
feature dimension of the modality m. Second, UFE encodes
the spatial features of each segment of modality m € M.
Third, UFE utilizes an LSTM, a variant of recurrent neu-
ral network, to encode unimodal spatial-temporal features.
Fourth, a self-attention approach has been employed to ex-
tract salient unimodal features, X* = (a¥,2%,...,,2%) €
RBEXMx=D" " from the extracted spatial-temporal features
(D" is the unimodal (u) feature embedding size). Instead of
utilizing a resource intensive multi-head self-attention ap-
proach (Vaswani et al. 2017), which was used by Islam and
Igbal (2020), in this work, we have adopted a lightweight
self-attention model from Long et al. (2018). MuMu uses
the unimodal features, X*“, in the subsequent learning mod-
ules to produce robust multimodal representations.

3.4 ATL: Auxiliary Task Learning Module

In the auxiliary task learning step, MuMu fuses the unimodal
features to extract activity-group-specific multimodal repre-
sentation for classifying the activity-groups in two steps:

Self Multimodal Fusion Approach (SM-Fusion): We
have designed a Self Multimodal Fusion Approach (SM-



Fusion) for extracting activity-group-specific salient fea-
tures. SM-Fusion assigns attention weight («,,) to each
modality for fusing unimodal features, X", and extracting
multimodal auxiliary representation, X *“*. The attention
weight, a,,, is calculated in the following way,

Y = (WHTXY )]
exp(’Ym)
m —_ 2
“ > exp(Ym) @
meM

Here, W“* is a learnable parameter. We have utilized
a 1D-CNN with a filter size of 1 to calculate ,,. Finally,
this weight is used to fuse the unimodal features and extract
multimodal auxiliary representation, X *“*:

X =N X 3)
meM
Activity-Group Classification: The auxiliary representa-
tion, X ¥, is passed through a auxiliary task learning net-
work, F'*“* to classify the activity-group:

ya'um — Fauw (Xauw) (4)

3.5 TTL: Target Task Learning Module

In MuMu, we have designed a target task to extract multi-
modal representations and classify activities in two steps.
First, MuMu uses activity-group features from the auxil-
iary task to direct our proposed Guided Multimodal Fusion
Approach (GM-Fusion) to extract multimodal representa-
tions. Because activity-group features can help to prioritize
the salient modalities to extract multimodal representations
appropriately. Second, MuMu uses fused representations to
classify the activities. In MuMu, the auxiliary and the target
tasks work cooperatively to extract complementary multi-
modal representations for recognizing activities accurately.

Guided Multimodal Fusion Approach (GM-Fusion):
GM-Fusion uses the extracted activity-group-specific fea-
tures from auxiliary task as prior information, X *“*, to ex-
tract multimodal representations for activity recognition.

First, GM-Fusion projects the extracted unimodal fea-
tures, X, to produce unimodal key (K™") and value (V*)
feature vectors in the following way:

KY — quK; VY = XUWV (5)

Here, WX and WV are learnable parameters. These uni-
modal key and value vectors are used to extract the mul-
timodal representation. Second, GM-Fusion projects multi-
modal auxiliary representation, X ***, to produce auxiliary
query feature vector (Q***).

Qau:z: — Xaua:wQ (6)

Here, W is a learnable parameter. This auxiliary query

feature vector (QQ®“?*) is used as a prior to extract comple-

mentary multimodal representation, X ¢, by utilizing the uni-
modal key (K*) and value (V) feature vectors:

, QaumKuT
x¢ = o B )y 7
”( VD ) @
X¢ — Wexe ®)

Here, W° is a learnable projection parameter.

Activity Classification: Multimodal representation, X,
is concatenated with activity-group-specific features, X *“*,
for activity classification. X ¢ is passed through a target task
learning network, Ft, to classify the activities:

X7 = wlixe; xou )
y' = F'(Xx7) (10)

Here, W7 is a learnable projection parameter.

3.6 Multitask Learning Loss

We have designed a multitask learning loss for end-to-end
training of MuMu. This loss is used to train the auxiliary and
the target tasks jointly. First, we use cross-entropy auxiliary
loss, L*"*, to train the auxiliary task for activity-group clas-
sification. L*“* enforces the auxiliary task branch to learn
the activity-group-specific multimodal representations.

B

auxr aur saur 1 auxr ~QUIT

Ly, §) = 5 >yl log (11)
i=1

Second, we calculate the cross-entropy loss, Lf, to train
the target task for activity classification. This loss ensures
that the target task learns the robust multimodal representa-
tions for activity recognition.

B
1 i
LMy = 5 > _vilog; (12)
=1

Finally, the auxiliary and target task losses are combined
for end-to-end training of MuMu:

loss = Lt(yt, Z}t) + BauxLaua:(yaux7 gaum) (13)

Here, 3*"* is the weight of auxiliary task learning loss.

4 Experimental Setup
4.1 Datasets

We evaluated the performance of our proposed approach,
MuMu, by applying it on three multimodal activity datasets:
UCSD-MIT (Kubota et al. 2019), UTD-MHD (Chen, Ja-
fari, and Kehtarnavaz 2015) and MMAct (Kong et al. 2019).
MMACct dataset contains 37 activities which are categorized
into 3 groups: 16 complex (e.g., carrying), 12 simple (e.g.,
kicking), 9 desk(e.g., using PCs). UCSD-MIT dataset con-
tains nine automotive and block assembly activities from
2 groups: 4 gross-motion (e.g., attaching part), and 5 fine-
motion (e.g., palmar grab). UTD-MHAD contains 27 activ-
ities which are categorized into 4 groups: 9 hand gesture
(e.g., draw circle), 9 sports (e.g., bowling), 5 daily (e.g., door
knock), and 4 training exercises (e.g., squat). Please check
the supplementary materials for more details.

4.2 Learning Architecture Implementation

We segmented the data from visual modalities (RGB and
depth) with a window size of 1 and a stride of 3. For the
data from other sensor modalities, we used a window size
of 5 and a stride of 5. To encode segmented spatial features,
we used ResNet-50 model (He et al. 2016) for data from



Table 1: Cross-subject performance comparison (F1-Score) of mul-
timodal learning methods on MMAct dataset

Method F1-Score (%)
SMD (Hinton, Vinyals, and Dean 2015) 63.89
Student (Kong et al. 2019) 64.44
Multi-Teachers (Kong et al. 2019) 62.67
MMD (Kong et al. 2019) 64.33
MMAD (Kong et al. 2019) 66.45
HAMLET (Islam and Igbal 2020) 69.35
Keyless (Long et al. 2018) 71.83
MuMu (Our method) 76.28

Table 2: Cross-session performance comparison (F1-Score) of mul-
timodal learning methods on MMAct dataset

Method F1-Score (%)
SVM-+HOG (Ofli et al. 2013) 46.52
TSN (RGB) (Wang et al. 2016) 69.20
TSN (Optical-Flow) (Wang et al. 2016) 72.57
MMAD (Kong et al. 2019) 74.58
TSN (Fusion) (Wang et al. 2016) 77.09
MMAD (Fusion) (Kong et al. 2019) 78.82
Keyless (Long et al. 2018) 81.11
HAMLET (Islam and Igbal 2020) 83.89
MuMu (Our method) 87.50

visual modalities (RGB and depth) and Co-occurrence ap-
proach (Li et al. 2018) for data from other sensors modali-
ties (SEMG, Acceleration, Gyroscope, and Orientation). The
unimodal feature of each modality is encoded to 128 sized
feature embedding. We used two fully connected layers with
Re-LU activation after the first layer for activity-group clas-
sification in auxiliary task learning. We used similar task
learning architecture for the activity classification in target
task learning. For more implementation and training proce-
dure details, please check the supplementary materials.

5 Results and Discussion
5.1 Comparison with Multimodal Approaches

Results: We evaluated MuMu’s performance by compar-
ing it against the state-of-the-art HAR approaches on
three datasets: MMAct, UTD-MHAD, and UCSD-MIT. For
MMAct dataset, we followed originally proposed cross-
subject and cross-session evaluation settings and reported
Fl-scores in Tables 1 & 2, respectively. The results sug-
gest that MuMu outperforms state-of-the-art approaches on
both cross-subject and cross-session evaluation settings with
improvements of 4.45% and 3.61% in Fl-score, respec-
tively. For UTD-MHAD and UCSD-MIT datasets, we fol-
lowed leave-one-subject-out cross-validation and reported
top-1 accuracies in Tables 4 & 3, respectively. The results
suggest that MuMu outperforms the best performing base-
lines with improvements of 6.86% and 2.48% in top-1 ac-
curacy on UCSD-MIT and UTD-MHAD datasets, respec-
tively.

Discussion: The experimental results on these activ-
ity datasets (Tables 1, 2, 4 & 3) suggest that MuMu out-
performs all the state-of-the-art approaches in all evalua-
tion conditions. Moreover, the results indicate that attention-
based HAR methods (i.e., MuMu, Keyless (Long et al.

Table 3: Performance comparison (F1-Score) of multimodal learn-
ing methods on UCSD-MIT dataset (Kubota et al. 2019).

Learning Methods Merge Types ~ F1-Score (%)

. SUM 5235

Non-Attention
CONCAT 50.92
HAMLET (Isl d Igbal 2020) SUM 20.04
slam anc fqba CONCAT 48.26
Keyless (L t al. 2018) SuM 51.68
eyless (Long et L CONCAT 5448
MuMu (Our method) - 61.34

Table 4: Performance comparison (top-1 accuracy) of multimodal
learning methods on UTD-MHAD dataset.

Method Accuracy (%)
MHAD (Chen, Jafari, and Kehtarnavaz 2015) 79.10
SOS (Hou et al. 2016) 86.97
S2DDI (Wang et al. 2017) 89.04
DCNN (Imran and Kumar 2016) 91.20
Keyless (Long et al. 2018) 92.67
MCRL (Liu, Kong, and Jiang 2019) 93.02
PoseMap (Liu and Yuan 2018) 94.51
HAMLET (Islam and Igbal 2020) 95.12
MuMu (Our method) 97.60

2018) and HAMLET (Islam and Igbal 2020)) outperform
Non-Attention-based methods (i.e., PoseMap (Liu and Yuan
2018) and TSN (Wang et al. 2016)). Unlike MuMu, the
other attention-based methods do not consider the activity-
group-specific information to extract multimodal represen-
tations. In our implementation, MuMu utilizes the activity-
group-specific information to extract complementary mul-
timodal representations by utilizing our proposed Guided
Multimodal Fusion approach (GM-Fusion). GM-Fusion al-
lows the prioritization of different modalities based on the
activity-group information extracted by the auxiliary task
learning module. Thus, the experimental results posit that in-
corporating activity-group information allows the extraction
of complementary multimodal representations effectively to
improve the HAR accuracy.

Although state-of-the-art multimodal HAR approaches
show comparatively better performance on cross-session
evaluation settings (Tables 2 & 4), the performance de-
grades on challenging cross-subject evaluation conditions
for all evaluated baselines (Tables 1 & 3). The performance
degrades because MMAct and UCSD-MIT datasets con-
tain data samples that enforce the utilization of the wear-
able sensors to recognize activities accurately, where the
wearable sensor data vary considerably across subjects (see
Fig. 1). To address this challenge, MuMu utilizes activity-
group features to guide GM-Fusion to extract salient multi-
modal representations for recognizing activities accurately.
On the other hand, state-of-the-art approaches fused uni-
modal features without considering activity-group informa-
tion. Additionally, in the cross-subject evaluation condi-
tions, MuMu outperforms the Fl-score of state-of-the-art
approaches on MMAct and UCSD-MIT datasets with an
improvement of 4.45% and 6.86%, respectively. These per-
formance improvements indicate that MuMu can generate
robust multimodal representation by prioritizing the salient
modalities than other approaches.



Table 5: Performance comparison (Accuracy %) of the impact of
modality changes on UTD-MHAD dataset. R: RGB, D: Depth, S:
Skeleton, P: Physical Sensors.

Learning Modality Combinations
Methods R+S R+S+P  R+D+S+P
Keyless (Long et al. 2018) 90.20 92.67 83.87
HAMLET (Islam and Igbal 2020) 95.12 91.16 90.09
MuMu 96.10 97.44 97.60

5.2 Impact of Supplementary Modalities

To investigate whether additional modalities help to improve
the performance of learning models, we evaluated the per-
formance of MuMu and two baseline approaches (Keyless
(Long et al. 2018)) and HAMLET (Islam and Igbal 2020))
with various combinations of modalities. We conducted this
study on the UTD-MHAD dataset with RGB, Depth, Skele-
ton, Physical sensors modalities. The experimental results
suggest that MuMu outperformed the evaluated baselines on
all the combinations of modalities tested (see Table 5).

Results & Discussion: In Table 5, the results suggest
that incorporating additional modalities helps MuMu to im-
prove the HAR accuracy. However, additional modalities do
not always improve the performance of two baselines. For
example, incorporating the depth modality degrades the ac-
curacy of the baseline methods, whereas the HAR accuracy
of MuMu improves slightly with this additional modality.

The performance of the baselines degrades, as additional
modalities may not provide salient information to recognize
a set of activities accurately. For example, visual modality
may not provide salient information for gesture recognition
(e.g., wave, swipe), whereas physical sensors can help rec-
ognize those activities accurately. The baseline methods ei-
ther concatenated or used a self-attention approach to fuse
unimodal features without considering the characteristics
of activity-group, which results in performance degrada-
tion with supplementary modalities. However, MuMu uses
activity-group information from the auxiliary task to guide
the target task for prioritizing and fusing the additional
modalities to extract complementary multimodal represen-
tations for recognizing activities accurately. Therefore, it is
essential to prioritize the salient modalities for extracting ro-
bust representation to recognize activities accurately.

5.3 Impact of Noisy Modalities

We conducted both quantitative and qualitative experiments
to evaluate the performance of MuMu and three baselines
(Non-Attention, HAMLET, and Keyless) in the presence of
noisy and misaligned sensor data. We developed the Non-
Attention method for evaluation purposes, where we extract
unimodal features using CNN+LSTM model without using
an attention mechanism. The extracted unimodal features
are concatenated to classify activities.

We conducted this study in cross-subject evaluation set-
ting on MMAct dataset with two visual modalities (RGB
View 1 & 2) and three non-visual modalities (Gyroscope,
Orientation & Acceleration). We randomly selected either
visual or non-visual modalities with 50% probability and
then dropped raw features to introduce noise. The quanti-
tative and qualitative experimental results are presented in

Table 6: Performance comparison (F1-Score %) of the impact of
noisy data on MMAct dataset. Visual: RGB (View 1 & 2), Non-
visual: Gyroscope, Orientation & Acceleration.

Learning No Noisy Noisy Modalities

Methods Modality Visual ~ Non-Visual
Non-Attention 68.29 66.30 66.02
HAMLET (Islam and Igbal 2020) 69.35 64.10 67.57
Keyless (Long et al. 2018) 71.83 67.94 68.29
MuMu 76.28 74.22 73.78

Table 6 and Fig 4, respectively.

Results & Discussion: The experimental results suggest
that MuMu outperforms the evaluated baselines in the pres-
ence of noisy data (Table 6). In MuMu, our proposed Guided
Multimodal Fusion Approach (GM-Fusion) appropriately
prioritizes the modalities and extracts the robust multimodal
representation from noisy sensor data for accurate activity
recognition. However, the baseline multimodal learning ap-
proaches either use Non-Attention or self-attention based
multimodal fusion, which may not effectively extract com-
plementary multimodal representations.

Additionally, the qualitative results of multimodal atten-
tion visualization (Fig. 4-Bottom row) indicate the same
phenomenon that MuMu can prioritize the salient modal-
ities to extract complementary multimodal representations
from noisy and misaligned sensor data. For example, al-
though the gyroscope and acceleration data provide distinc-
tive features for carry-heavy activity, MuMu adjusts the mul-
timodal attention weights when we introduce noise in those
modalities (Fig. 4-Bottom row), by paying more attention
to the non-noisy modality (Orientation) and less attention to
noisy modalities (Gyroscope and Acceleration), which con-
tribute to better HAR performance on noisy data (Table 6).
In Fig. 4-Center row, it can be observed that HAMLET,
which uses a self-attention based fusion approach, increased
the attention weight to the noisy sensor data (i.e., Acceler-
ation in Fig 4-Right) compared to the attention weight as-
signed on the non-noisy data samples (Fig 4-Left). These
qualitative results indicate that self-attention based fusion
may not appropriately prioritize the noisy sensor data to ex-
tract robust multimodal representations (Fig. 4-Center row),
which also reflects in the quantitative results in Table 6.

5.4 Ablation Study and Significance Analysis

To investigate the importance of various modules of MuMu,
we developed three single-task-based baseline models by re-
moving the auxiliary task learning branch in MuMu (Fig. 2).
The Non-Attention model (B1) does not employ any atten-
tion approach in extracting unimodal or fusing multimodal
features. The Unimodal Attention model (B2) employs an
attention approach to extract unimodal features and concate-
nate multimodal features (similar to Keyless (Long et al.
2018)). The Unimodal + Multimodal Attention model (B3)
uses an attention approach to extract unimodal and fuse
multimodal features (similar to HAMLET (Islam and Igbal
2020)). We trained and tested all these baselines and MuMu
five times with different initialization of the learning param-
eters. Additionally, we conducted the significance analysis
at level a = 0.05 by following the procedure proposed by



Table 7: Ablation study of MuMu components on MMAct Dataset.

Model Learning Average Standard Significant
Type Models F1-Score (%) Deviation Over §
B1 68.48 1.26 None
Single Task B2 70.52 0.98 Bl & B3
B3 ' 69.19 0.72 Bl
Multitask MuMu * 75.97 0.29 B1,B2 & B3

B1: Non-Attention, B2: Unimodal Attention, B3: Uni + Multimodal Attention
T Self-Attention based Multimodal Fusion, * Guided Multimodal Fusion
8 We conduct the significance analysis at &« = 0.05 (Following Dror et al. (2019))

Dror, Shlomov, and Reichart (2019). We conducted this ex-
perimental analysis on MMAct dataset in cross-subject eval-
uation setting. We also included additional ablation studies
in the supplementary document.

Results and Discussion: The experimental results in Ta-
ble 7 suggest that the baseline B3, which uses an attention
approach to prioritize the modalities, fails to outperform B2
significantly. Here, B2 uses the attention approach only to
extract unimodal and concatenate the multimodal features.
These results indicate that how a multimodal learning ap-
proach fuses the information is crucial in improving the
HAR performance.

Moreover, the experimental results in Table 7 indicate
that MuMu significantly outperforms all the baseline mod-
els and improves the HAR accuracy. The primary difference
between MuMu and the baseline models is that MuMu uses
activity-group features to guide the target task for extracting
multimodal representations. Thus, this experimental analy-
sis indicates that MuMu, with the help of our guided mul-
timodal fusion approach, can appropriately fuse multimodal
features to improve the HAR accuracy significantly.

5.5 Qualitative Analysis

We conducted two qualitative analyses to evaluate the effec-
tiveness of our guided multimodal fusion approach. First, we
visualized the attention weights to evaluate whether MuMu
can prioritize the salient modalities (Fig. 1 & 4). Second,
we visualized t-SNE embeddings of unimodal and multi-
modal representations obtained using MuMu (Fig. 3-Right)
and HAMLET with self-attention based fusion (Islam and
Igbal 2020) (Fig. 3-Left). We conducted these studies on the
MMAct dataset in cross-subject evaluation setting.
Attention Visualization: Our experimental analysis

. Visual Gyroscope Orientation . Watch accelerometer . Multimodal

Figure 3: The t-SNE visualization of unimodal and multimodal rep-
resentations. (Left) HAMLET with Self-Attention based Fusion,
(Right) MuMu with Guided Multimodal Fusion.
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Figure 4: Comparative impact of guided multimodal attention in
MuMu to extract complementary multimodal representations from
noisy sensor data (Multimodal attention weights visualization).

(Fig. 1 & 4) suggests that appropriately prioritizing the rel-
evant modalities aids in improved HAR performance. The
results in Fig. 1-a & b indicate that MuMu can appropriately
prioritize the salient modalities (Gyroscope and Accelera-
tion) in extracting complementary representations to distin-
guish visually similar activities (i.e., carry-light and carry-
heavy). Additionally, when the data from these modalities
are noisy, MuMu adjusts the attention weights to the non-
noisy modalities (i.e., visual and orientation) to extract com-
plementary multimodal representations (Fig. 4). These re-
sults indicate that MuMu can adjust attention weights based
on the extracted unimodal features to produce complemen-
tary representations. On the other hand, the self-attention
based multimodal fusion approach can not appropriately pri-
oritize the relevant modalities (Fig. 4), which results in per-
formance degradation (Table 7).

Feature Visualization (t-SNE): In Fig. 3, one can ob-
serve that the features are sparsely distributed with frac-
tured clusters when obtained from HAMLET, whereas
the features are more compact and smoothly distributed
when obtained from MuMu. Specifically, for visual modal-
ities, MuMu produces clustered representations, whereas
HAMLET produces sparsely distributed representations.
This visualization indicates that MuMu can extract non-
overlapping distinctive representations, resulting in an im-
proved HAR performance.

6 Conclusion

In this work, we have proposed a cooperative multitask
learning-based guided multimodal fusion approach, MuMu.
MuMu first extracts activity-group features for activity-
group recognition (Auxiliary task). MuMu then utilizes the
activity-group features in the Guided Multimodal Fusion
(GM-Fusion) module to extract complementary multimodal
representations for HAR (Target task). Our extensive ex-
perimental results suggest that MuMu outperforms state-of-
the-art approaches on three multimodal activity recognition
datasets in all evaluation conditions. Additionally, the ro-
bust performance on noisy data indicates the applicability
of MuMu in real-world settings. Future work will focus on
evaluating the performance of MuMu on other multimodal
learning tasks, such as human motion prediction, visual-
language navigation, and action or video retrieval.
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